# Quick Start Guide ## Installation Install kanoa via pip: ```bash pip install kanoa ``` For development: ```bash git clone https://github.com/lhzn-io/kanoa.git cd kanoa pip install -e ".[dev]" ``` ## Authentication ### Local Development Use Application Default Credentials (ADC): ```bash gcloud auth application-default login ``` Or set API keys as environment variables: ```bash export GOOGLE_API_KEY="your-api-key" export ANTHROPIC_API_KEY="your-api-key" ``` ### Production/CI Use Service Accounts with Workload Identity Federation (recommended) or Service Account keys. ## Basic Usage ### Interpreting a Figure ```python import matplotlib.pyplot as plt from kanoa import AnalyticsInterpreter # Create a plot plt.plot([1, 2, 3], [1, 4, 9]) plt.title("Growth Curve") # Initialize interpreter (defaults to Gemini 3 Pro) interpreter = AnalyticsInterpreter() # Interpret result = interpreter.interpret( image=plt, context="Water quality analysis", focus="Identify any concerning trends" ) print(result.text) ``` ### Using Claude Sonnet 4.5 ```python interpreter = AnalyticsInterpreter(backend='claude') result = interpreter.interpret(fig=plt.gcf()) ``` ### With a Knowledge Base ```python # Point to a directory of Markdown or PDF files interpreter = AnalyticsInterpreter( backend='gemini', kb_path='./docs/literature' # Auto-detects all file types ) result = interpreter.interpret( fig=plt.gcf(), context="Compare with Smith et al. 2023" ) ``` ### Interpreting Data ```python import pandas as pd df = pd.DataFrame({ 'dissolved_oxygen': [6.5, 6.8, 7.2, 7.0], 'site': ['Site A', 'Site B', 'Site C', 'Site D'] }) result = interpreter.chat( data=df, context="Water quality monitoring report", focus="Summarize the findings" ) ``` ## Cost Tracking ```python # Get cost summary summary = interpreter.get_cost_summary() print(f"Total cost: ${summary['total_cost_usd']:.4f}") print(f"Total tokens: {summary['total_tokens']}") ```